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How do recent changes in 
Lake Erie affect birds?
Part three: type-E botulism
Doug Tozer and Gregor Beck

THE HEALTH OF LAKE ERIE reached a
low point in the 1960s and 1970s, and
then improved greatly by the 1980s
(Mak arewicz and Bertram 1991). Now,
Lake Erie is suffering from harmful algal
blooms, botulism, invasive species, cli-
mate change and other issues. Why is
this? What has brought about so many
new issues? What does it all mean for
birds? This review article is the last of a
series of three articles in Ontario Birds.
The articles provide an overview of some
of the current environmental and eco-
logical issues for Lake Erie, with empha-
sis on the implications for the numerous
bird species that depend on the lake for
nesting and migration. There are dozens
of worthy issues to profile. We chose to
begin, in part one, with invasive Phrag-
mites (Tozer and Beck 2018); in part two,
we tackled invasive Zebra Mussels and
Quagga Mussels (Dreissena polymorpha
and D. rostriformis bugensis, respectively;
Tozer and Beck 2019); and here, in part
three, we take on the impacts of type-E
botulism. In addition to a review of each
issue, the articles present new analysis of
relevant citizen science data and suggest

actions that we, as birders, can take to
help alleviate the issues.

Botulism is a disease that infects
humans as well as wildlife (Critchley
1991). It is caused by neurotoxins pro-
duced by the bacterium Clostridium bot-
ulinum (Desta et al. 2016). There are sev-
eral types or strains of C.botulinum (types
A through H), each surviving best under
different conditions (Hannett et al.
2011). Botulism rarely infects humans
because thorough cooking, good hygiene
and other routine measures prevent the
acquisition of the toxins (Shapiro et al.
1998). A few of the strains infect wild
birds: type-C causes die-offs of waterfowl
throughout the world, particularly in
western North America (Wobeser et al.
1987) and type-E causes die-offs in the
Great Lakes (Wijesinghe et al. 2015). C.
botulinum is a native species that occurs
in soils and sediments throughout the
Great Lakes (Graikoski et al. 1968). It
survives for long periods, sometimes for
many decades, as harmless dormant
spores, but once favourable growing con-
ditions are encountered it starts growing
and produces botulinum neurotoxin 
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(Long and Trauscher 2006). The neuro-
toxin is one of the most potent toxins
known (Singh 2000) and although many
aspects of the disease have been well-
studied for nearly two centuries (Cher-
ington 2004), the function that the toxin
serves for the bacteria, if there is one,
remains unclear (Simpson 1986). Alter-
natively, the toxin may be a by-product
of a complicated evolutionary history
involving lateral transfer of toxin-pro-
ducing genes to the bacteria, perhaps
from a virus, with no obvious subsequent

benefit to the bacteria (Poulain and
Popoff 2019). As such, survival is just as
high and distribution in the environment
is just as extensive in toxic and non-toxic
forms of certain strains of C. botulinum
(Poulain and Popoff 2019). Therefore,
the current type-E botulism issue for
waterbirds (i.e., any aquatic bird species)
in Lake Erie and the rest of the Great
Lakes might ultimately be attributable to
a mere chance event deep in C. botu-
linum’s evolutionary history!

Figure 1. Tens of thousands of individuals belonging to dozens of different waterbird species, such as this
Common Loon, sometimes die during late summer and autumn on Lake Erie and the other Great Lakes
due to outbreaks of type-E botulism. Photo: Bird Studies Canada 
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The problem for waterbirds, or any
other vertebrate such as fish, is that
botul inum toxin interferes with trans-
mission of nerve impulses intended to
stimulate peripheral or voluntary muscles
(Desta et al. 2016). Through a series of
different steps, the toxin prevents the
neurotransmitter acetylcholine from
traveling out from nerve endings, effec-
tively killing nerve impulses so they never
reach intended muscles (Gundersen
1980). The result is flaccid paralysis, and
waterbirds with even very small doses of
the toxin are unable to keep their eyes
open, raise their wings, move their feet,
or hold up their heads, hence the com-
mon name “limberneck disease” (Cher-
ington 2004). In the end, infected water-
birds typically die a slow death due to
starvation, drown ing, depredation, or
other complications (Figure 1).

The occurrence and magnitude of
waterbird mortalities due to type-E bot-
ulism is highly variable over space and
time (Lafrancois et al. 2011). Die-offs of
waterbirds were first recorded in the
Great Lakes in the early 1960s, contin-
ued sporadically during the 1970s and
1980s and were absent during most of
the 1990s (Brand et al. 1983, 1988; Cab -
rera 2014). Die-offs of waterbirds due to
type-E botulism have occurred annually
in Lake Huron since 1998, Lake Erie
since 1999 and Lake Ontario since 2002
(Cabrera 2014). The die-offs involve a
variety of different species including
loons, grebes, herons, cormorants, ducks,
coots, shorebirds, eagles, gulls, terns and
crows (Carpentier 2000, Canadian 
Co op erative Wildlife Health Centre
2008, Chipault et al. 2015). In some
years, only a small number of birds are

found dead, whereas in 2002, one of the
worst years on record, over 20,000 indi-
viduals washed up dead on beaches and
shorelines throughout the Great Lakes
(Cabrera 2014). The number of dead
individuals recorded is, of course, only an
unknown fraction of the total number
killed, given that carcasses sink before
they wash up on shore or carcasses wash
up in locations where they go unrecord-
ed. Recent research using radio transmit-
ters implanted in floating Common
Loon carcasses released throughout Lake
Michigan aimed to uncover how wind,
waves and water currents influence the
trajectory of floating carcasses, which will
help identify botulism hotspots and may
help better understand how many car-
casses go undetected (Kenow et al. 2016).

What happened starting in the late
1990s and early 2000s to cause annual
die-offs of waterbirds in Lake Erie and
most of the other Great Lakes? The quick
answer is: we don’t really know. Evidence
is building to suggest that recurring type-
E botulism is the result of multiple, com-
plicated, interacting pathways of infec-
tion involving nutrient runoff, invasive
species, algal blooms, climate change and
perhaps additional factors yet to be dis-
covered. The basics go like this: C. botu-
linum spores become activated and pro-
duce toxin when they encounter warm
water with abundant nutrients and no
oxygen (Espelund and Klaveness 2014).
We know from long-term monitoring
that water temperature (Mason et al.
2016), extent of deoxygenated water or
hypoxia (Zhou et al. 2013) and soluble
reactive phosphorus (Daloğlu et al.
2012) have all increased in recent decades
in Lake Erie and some of the other 
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Great Lakes. The result: increasingly good
conditions for production of botulism
neurotoxin. 

Now add a dash of invasive species and
a pinch of algae. C. botulinum spores
become very active and produce large
amounts of neurotoxin within hot, oxy-
gen-depleted, nutrient-rich mats of rot-
ting algae of the genus Cladophora (most-
ly C. glomerata, hereafter “Cladophora”),
which piles up in shallow water and along
shorelines in late summer (Byappanahalli
and Whitman 2009, Chun et al. 2013,
2015). Submerged aquatic vegetation
dominated by Cladophora has increased in
extent in all of the Great Lakes in recent
decades as shown by remote sensing satel-
lite data (Brooks et al. 2015). The increase
in Cladophora is in part due to increases
in water clarity and associated light pene-
tration brought about by the super-effi-
cient filter feeding of non-native invasive
Zebra Mussels and Quagga Mussels,
which remove light-blocking phytoplank-
ton and other particles from the water 
column (Auer et al. 2010). The increase
in Cladophora is also due to increases in
hard substrate for Cladophora to attach to
in the form of the mussels’ shells, since
Cladophora only grows on hard surfaces
and not on soft mud or sand (Higgins et
al. 2008). The mussels also concentrate
nutrients for Cladophora by filtering
nutrients out of the water column and
eliminating them in their feces (Hecky 
et al. 2004, Dayton et al. 2014). The
enhance ment of algal growth by the mus-
sels is made even stronger by recent
increases in nutrient runoff into Lake Erie
and the other Great Lakes due to increas-
es in surface application of fertilizer on
agricultural fields during the non-growing

season, which is more likely to wash
downstream into the lakes during increas-
ingly frequent storms, themselves a con-
sequence of climate change (Smith et al.
2015). Indeed, the overall enhancing
effect of the mussels on algal growth has
been shown convincingly through exper-
imental manipulation using pre-con-
structed “colonies” of live and dead mus-
sels either with or without artificial addi-
tion of nutrients (Francoeur et al. 2017).
In short, bring in non-native invasive
mussels, clear the water column, increase
the light, increase the nutrients, bring on
the Cladophora and produce lots of bot -
ulism neurotoxin in dead mats of algae 
at the end of the summer. As further 
evidence of these relationships, multiple
studies show correlations at various scales
between type-E botulism outbreaks in
waterbirds and warm water, low water
(shallow water tends to be warmer) and
Cladophora (Wijesinghe et al. 2015, Princé
et al. 2017).

How do botulism bacteria or its neu-
rotoxin get from rotting mats of algae or
other sources into waterbirds? One way is
through invertebrates such as fly maggots
(Diptera larva) that pick up the bacteria
or toxin while feeding on or within rot-
ting carcases or algae washed up along the
lakeshore. Notably, invertebrates such as
aquatic insects and mussels are unaffected
by the neurotoxin (Pérez-Fuentetaja et al.
2011). Shorebirds feed on the tainted
invertebrates (Figure 2) and gulls and
other scavengers feed on the infected car-
cases, and in turn can become infected.
These pathways are likely the most com-
mon in the summer and early fall (Cana-
dian Cooperative Wildlife Health Centre
2008). The presence of botulism bacteria 
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or its toxin is also found at high levels in
the tissues of living and dead Zebra Mus-
sels and Quagga Mussels, as well as in
various other aquatic invertebrates, such
as larval midges (Chironomidae) and
worms (Oligochaeta) (Pérez-Fuentetaja
et al. 2006, 2011). The chironomids,
oligochetes and other non-mussel inver-
tebrates likely acquire the bacteria or its
toxin through direct ingestion or while
eating detritus or sediment, particularly
near rotting algae, whereas the mussels
likely acquire the toxin by filtering it out
of the water column or filtering out
smaller invertebrates that have already
acquired it (Getchell and Bowser 2006,
Pérez-Fuentetaja et al. 2006). Certain
waterfowl, such as the Long-tailed Duck
(Clangula hyemalis), Common Golden-
eye (Bucephala clangula) and Bufflehead
(B. albeola) feed on the tainted mussels
and the toxin-laden aquatic invertebrates
(Schummer et al. 2008a,b). Fish feed 
on the infected mussels and other infect-
ed invertebrates and due to biomagnifi-
cation acquire high concentrations of
the bacteria or toxin (Bott et al. 1966).
The tainted fish are in turn fed on by a
variety of different waterbirds (Essian et
al. 2016). In an ironic final twist, anoth-
er non-native invasive species, the
Round Goby (Neogobius melanostomus), 

specializes in feeding on non-native inva-
sive mussels and is itself especially com-
mon in the stomachs of botulism-killed
waterbirds, particularly cormorants and
loons (Hebert et al. 2014, Essian et al.
2016, King et al. 2017). Furthermore,
botulism-infected fish that are partially
paralyzed are attractive, easy pickings for
fish-eating waterbirds (Yule et al. 2006).
The pathways leading up through aquat-
ic invertebrates, mussels and fish to
waterbirds are likely the most common
in autumn (Canadian Cooperative
Wildlife Health Centre 2008). There are
probably other sources and production
pathways of botulism yet to be discov-
ered or better described, such as water
currents that bring spores up from the
sediment so they are available to enter

Figure 2. Some waterbirds, such as this Spotted
Sandpiper, become infected with type-E botulism
bacteria or its toxin while feeding on or within
tainted algae washed up along lakeshores.
Photo: Leslie Abram
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the food chain and additional complicat-
ing factors involving competition
between C. botulinum and other micro -
organisms that keep botulism bacteria at
low numbers (Pérez-Fuentetaja et al.
2006). The bottom line is that recurring
outbreaks of type-E botulism on the
Great Lakes over the past two decades
appear to be the result of multiple, com-
plicated, interacting ecological and envi-
ronmental changes ultimately brought
about by non-native invasive Zebra Mus-
sels and Quagga Mussels, nutrient load-
ing and climate change.

The botulism issue is complicated
and potentially quite big, but is it actual-
ly negatively affecting waterbird popula-
tions? Long-term bird population moni-
toring programs are extremely important

for answering this type of timely but
unforeseen question. As shown above,
there are dozens of waterbird species that
are potentially affected by type-E botu-
lism on the Great Lakes. Based on ob ser -
ved mortalities, the majority of dead
individuals are loons, mergansers, cor-
morants and gulls (Carpentier 2000,
Canadian Cooperative Wildlife Health
Centre 2008, Chipault et al. 2015). Pop -
ulations of most of these more-common-
ly killed species have remained steady or
increased over the past two decades in
Ontario or the Great Lakes when type-E
botulism has been most prevalent. For
example, abundance of breeding Com -
mon Loons was stable in Ontario during
the period (Smith et al. 2019); abun-
dance increased for Common Merganser 
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Figure 3. Type-E botulism may be reducing 
the reproductive success of the Common Loon 
(an adult with two chicks is shown here).
Photo: Missy Mandel

(Mergus merganser) in southern Ontario
and for Red-breasted Merganser (Mergus
serrator) in northeastern North America
(Canadian Wildlife Service Waterfowl
Committee 2017); the number of breed-
ing Double-crested Cormorants (Pha-
lacrocorax auritus) increased and stabi-
lized throughout the Great Lakes
(Weseloh et al. 2002, Ridgway et al.
2006). Exceptions to that trend are the
number of breeding gulls. Ring-billed
Gulls (Larus delawarensis) and Herring
Gulls (L. argentatus) declined slightly in
the Great Lakes, although this is thought
to be due to reduced food availability
rather than botulism (Weseloh 2011). By
contrast, the Great Black-backed Gull 
(L. marinus) is apparently especially 
susceptible to type-E botulism and as a
result has been extirpated as a breeder
from eastern Lake Ontario (Shutt et al.
2014) and may soon be eliminated as a
breeder from throughout the Great Lakes
(Weseloh 2011). Therefore, it seems that
the widespread die-offs caused by type-E
botulism are not creating long-term
population-level impacts—in most cases.
However, continued research and moni-
toring are needed to fully understand
population-level impacts. 

The above examples tell us whether
abundance of infected waterbird species
is negatively influenced by type-E botu-
lism, but they do not tell us about poten-
tial negative effects on reproductive suc-
cess, which could happen without con-
current changes in population size. For
example, we could see stable or nearly
stable populations at the same time as
declining reproductive success if enough
immigrants move in from outside to
maintain the population. The Common
Loon (Figure 3) seems to be especially
vulnerable to type-E botulism given that
it figures prominently in counts of botu-
lism-killed carcases that wash up on shore
(Carpentier 2000, Canadian Cooperative
Wildlife Health Centre 2008, Chipault
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et al. 2015). As such, we used data from
Bird Studies Canada’s Canadian Lakes
Loon Survey (Tozer et al. 2013b) to
explore the possibility that reproductive
success of this hard-hit species might be
negatively affected by type-E botulism.
Our line of reasoning was as follows: The
Common Loon is a long-lived species (up
to 20-30 years in the wild) and breeds
throughout central and northern On -
tario, well to the north of the lower Great
Lakes where botulism outbreaks are most
common (Evers 2007). Individuals typi-
cally spend the first few years of their lives
on the ocean and at 3-4 years of age
return to the breeding grounds for the
first time to acquire a breeding territory
(Piper et al. 2015). Based on studies of

colour-marked Common Loons, we
know that reproductive success is lower
for male Common Loons breeding on a
territory for the first time; apparently it
takes up to two or more years for them to
learn, by trial and error, where the best
nest sites are located on a territory in
order to maximize their reproductive suc-
cess (Piper et al. 2008). Remarkably, nest
sites in this species are chosen by males,
regardless of previous nesting experience
of females, for reasons that remain
unclear (Piper et al. 2008). We also know
from colour-marked individuals that the
number of young produced per year for
males but not females increases with
increasing age up to 15-17 years old 
(Piper et al. 2017). If enough breeding
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males die due to botulism on their south-
ward migration through the lower Great
Lakes each autumn, then as a result, we
would expect a larger proportion of
younger, inexperienced, first-time territo-
rial males in the breeding population the
following spring and thereafter, with an
associated reduction in reproductive suc-
cess over the years. Thus, if type-E botu-
lism negatively affects the reproductive
success of Common Loons, we would
expect higher chick production, on aver-
age, before the onset of recurring type-E
botulism outbreaks in the late 1990s and
early 2000s and lower chick production
after that time.

We explored these ideas using data
from 11,623 Common Loon breeding
attempts on 1,317 lakes spread across 38
years in Ontario (Figure 4). Following
Tozer et al. (2013a), we modeled the
number of six-week-old young per terri-
torial pair per year from 1981 to 2018
while controlling statistically for lake size
and longitude given that the number of
young produced is known to increase
with increasing lake size (Alvo 2009,
Piper et al. 2012) and is higher in the west
compared to the east (Tozer et al. 2013a).
We also included a random effect for each
lake because ~50% of the lakes surveyed
each year, on average, had reproductive 

Figure 4. Lakes with at least one year of data collected by participants in Bird Studies Canada’s Canadian
Lakes Loon Survey used to determine patterns in Common Loon reproductive success in Ontario between
1981 and 2018 (n = 1,317 lakes).

Survey lake
ONTARIO



Volume 37  Number 2 93

success data for > 1 pair of loons (Tozer
et al. 2013a). We focused on six-week-old
young because Common Loons of this
age have attained nearly adult size and
with it a much lower chance of being
depredated, making them a reasonable
indicator of the number of young actual-
ly fledged (Evers 2007). Even though
acidity is a strong predictor of loon repro-
ductive success (Alvo et al. 1988, Alvo
2009), we were unable to control for dif-
ferences in pH due to lack of data. We
found the number of young per pair per
year was highly variable, with no clear
difference in reproductive success before
and after the onset of recurring type-E
botulism in the late 1990s and early
2000s (Figure 5). Nonetheless, it is worth
noting that years of extremely good chick
production (i.e., at or above 0.75 young 

Figure 5. Reproductive success of Common
Loons in Ontario between 1981 and 2018. 
Shown are annual estimates (dots) and 
associated 95% confidence intervals (vertical
gray lines). A loess line of best fit (curved blue
line) is included to show overall trajectory. 
The orange horizontal dashed line denotes an
estimate of the minimum number of young per
pair per year (0.48) required to prevent popula-
tion declines (Evers 2007). Years of extremely
good chick production (i.e., at or above 0.75
young per pair per year) ceased to occur after
1999 when recurring type-E botulism spread 
throughout the lower Great Lakes. 
Data source: Bird Studies Canada’s 
Canadian Lakes Loon Survey
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per pair per year) ceased to occur after
1999 when recurring type-E botulism
started to spread throughout the lower
Great Lakes (Figure 5). 

Whether this pattern is linked to bot-
ulism is unknown. Of course, there are
many other factors that influence repro-
ductive success of Common Loons,
including acid precipitation, mercury
pollution and climate change, any com-
bination of which might also explain the
pattern, but the influence of botulism is
worth considering. On a happy note, the
number of Common Loon chicks pro-
duced in most of the years since the early
2000s is apparently high enough to main-
tain a stable population given the average
number of young per pair per year in
most years is above 0.48 (Figure 5), which
is the best available estimate of the mini-
mum number required to prevent popu-
lation declines (Evers 2007). 

So what does it all mean? We have
seen that type-E botulism in waterbirds
in Lake Erie and the lower Great Lakes is
due to multiple, complicated, interacting
ecological and environmental changes
ultimately brought about by non-native
invasive species, nutrient loading, climate
change and probably other factors. There-
fore, we cannot stress enough to be
extremely careful regarding these issues,
especially taking steps to avoid introduc-
ing and spreading non-native invasive
species (see summary at Ministry of Nat-
ural Resources and Forestry 2019), a con-
cluding message we also arrived at in each
of our first two articles in this three-part
series (Tozer and Beck 2018, 2019). Any-
thing we can do to reduce nutrient load-
ing and climate change in the Great Lakes
will also help mitigate the type-E botu-
lism issue for waterbirds (see Environ-
mental Commissioner of Ontario 2018
a,b). In particular, there are actions we
can all take as individuals to help mitigate
climate change (see Environmental Com-
missioner of Ontario 2019). In the end,
perhaps the most important action we
can collectively take as birders to help
alleviate botulism and the many other
issues currently affecting Lake Erie and
the lower Great Lakes is to inform every-
one that there is much more at stake than
most people typically appreciate. All too
often, the negative effects that these issues
have on humans receive the most atten-
tion by the media and the general public,
whereas the negative implications for
waterbirds tend to go unnoticed or unad-
dressed. This is where we, as birders, can
help in a big way to achieve a healthier
balance.

Botulism-killed Common Loon. 
Photo: Bird Studies Canada
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